


• Core developer in Postgres Professional since 2021

• B.S. in Computer Science (Informatics and Computer Science), 
State Dubna University, 2021

• Certificate of advanced training “Big data analytics”, 2021

• Contributing to the PostgreSQL project since 2023
• OR to ANY transformation
• Self-Join-Elimination

• Participated in extension development: 
• AQO
• sr_plan
• replaning























Wrong cardinality estimation



Wrong cardinality estimation

Wrong cost estimation



Wrong cardinality estimation

Wrong cost estimation

Choose nonoptimal plans



We are only 
engaged in 

improving the 
assessment of 

cardinality and 
don't consider 

assessment of cost

Wrong cardinality estimation

Wrong cost estimation

Choose nonoptimal plans



How good are query optimizers, really?
V.Levis, A.Gubichev, A.Mirchev, P.Boncz,

A.Kemper and T.Neumann,
Proc. VLDB, Nov.2015

Adaptive Cardilnality Estimation
O.Ivanov, S.Bartunov,

Arxiv, Nov.2017



Functional 
dependencies

Extended
statistics

The index statistics for 
the expression 



Functional 
dependencies

Extended
statistics

The index statistics for 
the expression 







Nested Loop

SeqScan t1 SeqScan t2

relid = 2, clause: c>2
selectivity: { 0.33 }







w1<w2<w3



• Every node is described through its selectivity 
of all its conditions

• All conditions in the node that differ only in 
constants are equivalent 

• The closest nodes of the query based on R2-
distance are neighbours

• We need to predict the number of rows of a 
new node based on the known data of its 
neighbours

• Define the number of rows as a weighted 
average of the cardinalities of neighbours

w1<w2<w3











AQO Data



AQO queries

It stores selectivities and number of rows of nodes

AQO Data



AQO query text

AQO queries

It stores selectivities and number of rows of nodes

AQO Data



AQO query text

AQO queries

It stores selectivities and number of rows of nodes

AQO Data

Execution 
statistics























Planning stage (prediction):

•set_baserel_size_estimates

•set_joinrel_size_estimates

•set_foreign_rows_estimate

•get_parameterized_baserel_size

•get_parameterized_joinrel_size

•estimate_num_groups

Other:

•planner_hook – prepare to the planning stage

•ExecutorStart – setting the flags for statistics collection

•copy_generic_path_info – transmit Path information to Plan node

•create_plan_hook - transmit Plan information to the Execution stage for learning

After-execution stage:

•ExecutorEnd – learning

•ExplainOnePlan – visualization



After-execution stage:

•ExecutorEnd – learning

•ExplainOnePlan – visualization

transmit cardinality information from the 
optimizer to the AQO and vice versa



Planning stage (prediction):

•set_baserel_size_estimates

•set_joinrel_size_estimates

•set_foreign_rows_estimate

•get_parameterized_baserel_size

•get_parameterized_joinrel_size

•estimate_num_groups

Other:

•planner_hook – prepare to the planning stage

•ExecutorStart – setting the flags for statistics collection

•copy_generic_path_info – transmit Path information to Plan node

•create_plan_hook - transmit Plan information to the Execution stage for learning

visualize debugging information about the Query 
plan with the AQO









In progress…





















You can find the database here: 
https://github.com/Alena0704/Test-AQO/tree/main





SELECT * FROM STUDENT WHERE GROUP = 'classA';

SELECT * FROM STUDENT WHERE GROUP = 'classB';

SELECT * FROM STUDENT WHERE gen = 'female';



 ->  Seq Scan on student
Filter: (group = classA) 

 ->  Index Scan using student_idx1 on student 
Filter: (group = classA) 

 ->  Index Scan using student_idx1 on student 
Filter: (group = classB) 

SELECT * FROM STUDENT WHERE GROUP = 'classA';

SELECT * FROM STUDENT WHERE GROUP = 'classB';





AQO:2 iterations





AQO:2 iterations









AQO:3 iteartions



Without AQO With AQO                                                 







The Reason: 
• The Merge Join rewinds its inner side to the start of the current group of equal keyed tuples if the next 

outer tuple must be also joined to the same group.
• Explain counts those tuples twice.

You can find the thread here: bit.ly/3yyH6dx



SELECT * FROM aqo_query_stats \gx





AUTO

DISABLED Disabled: disabled at all query types

LEARN Learn: enabled for learning for every query types

PREDICTION
Forced: enabled for all query types

Controlled: only learns and makes predictions for known queries

Frozen: makes predictions for known queries, but does not learn from any queries



aqo_data aqo_queries aqo_query_text aqo_query_stat

• Feature space (Queries)
• Feature subspace (Nodes)
• NFeatures
• Features (Selectivities)
• Targets (Rows)
• Oids of relations

• Query hash
• Learn AQO
• Use AQO
• Feature space (Query 

hash)
• Auto tuning

• Query hash
• Query text

• Queryid
• Execution time with AQO
• Execution time without AQO
• Planning time with AQO
• Planning time without AQO
• Cardinality error with AQO
• Cardinality Error without 

AQO
• Executions with AQO
• Executions without AQO

It stores selectivities for 
every query statement and 
it's number of rows

Settings for all known 
queries

It stores all known 
queries and it's 
hashes

For analysis of working AQO





You can find the thread here:  bit.ly/4bCE5ru





main parameters on all stages:

• random/seq_page_cost = 1

• from/join_collapse_limit = 4

parameters on learning stage: 

• disable parallelism

disabled, frozen stages: 

• enable parallelism



queries

execution time



queries

cardinality error

execution timeexecution time



queries

cardinality error

execution time



queries

cardinality error

execution time



queries

cardinality error

execution time



queries

cardinality error

execution time



queries

cardinality error

execution time



cardinality error

execution time

queries







AQO:

+ Stores statistical information about query execution 

+ Helps optimizer to improve cardinality estimation

+ Is useful for complicated queries of the same structure with slow plan caused by 
bad cardinality estimates

+ Works well for OLAP-like queries

Has limitations:

• Works well when data distribution doesn't change rapidly

• Works well in databases with few temporary tables





Speaker: Alena Rybakina
email: a.rybakina@postgrespro.ru

LinkedIn: https://www.linkedin.com/in/alena-rybakina


