POSTGRESQL DEVELOPMENT
PogzgresPro CONFERENCE 2024 G@%gsonf

Adaptive Query Optimization
(AQO)

Speaker: Alena Rybakina

Presentation was made by: Alena Rybakina, Andrei Lepikhov

Self Introduction C,UQ

b

e Core developer in Postgres Professional since 2021

 B.S.in Computer Science (Informatics and Computer Science),
State Dubna University, 2021

e Certificate of advanced training “Big data analytics”, 2021

e Contributing to the PostgreSQL project since 2023
e OR to ANY transformation
e Self-Join-Elimination

e Participated in extension development:
* AQO

e sr_plan
e replaning

PGConf
.dev

What is AQO?

Outline Of The Talk &Q%Céf?nf

] 1. How does Adaptive Query Optimization (AQO) work?

What is AQO? > 5

Outline Of The Talk &Q%Céf?nf

] 1. How does Adaptive Query Optimization (AQO) work?

] 2. Problems & Features

What is AQO? > q

Outline Of The Talk C’UQ%IESOM

] 1. How does Adaptive Query Optimization (AQO) work?

] 2. Problems & Features

] 3. Examples

What is AQO? > .

Outline Of The Talk C’UQ%IESOM

] 1. How does Adaptive Query Optimization (AQO) work?
] 2. Problems & Features
] 3. Examples

| 4. Testing results

What is AQO? > "

Pogzgres Pro C'UQ PGConf

o .dev

How docs AQO work?

Adaptive Query Optimization ~\PGConf
ptiv ry Optimizati C’Q.dev

e [t improves cardinality estimation
e |t can effect the planner to find more optimal plan

e |t saves the real cardinality information to use it in the future

1. How does AQO work? 2. Problems & Features > g

Adaptive Query Optimization ~\PGConf
gess W L C’Q.dev

e [t improves cardinality estimation
e |t can effect the planner to find more optimal plan

e |t saves the real cardinality information to use it in the future

How does 1t work?

1. How does AQO work? 2. Problems & Features > 9

Optimization Issues G@%Céf?nf
Vo

] it needs always to use actual statistics

1. How does AQO work? 2. Problems & Features > 10

Optimization Issues G@%Céf?nf
Vo

] It needs always to use actual statistics

] 1t poorly works with a large number of joins in the query

1. How does AQO work? 2. Problems & Features > T

Optimization Issues G@%Céf?nf
Vo

] It needs always to use actual statistics

| 1t poorly works with a large number of joins in the query

] thasan assumption in uniform distribution between columns

1. How does AQO work? 2. Problems & Features > 12

What Does This Lead To ~\PGConf
C’Q.dev

Wrong cardinality estimatim}(p

1. How does AQO work? 2. Problems & Features > 3

What Does This Lead To ~\PGConf
C’Q.dev

Wrong cardinality estimatiory

Wrong cost estimation

1. How does AQO work? 2. Problems & Features > 14

What Does This Lead To ~\PGConf
C’Q.dev

Wrong cardinality estimatiory

Wrong cost estimation

Choose nonoptimal plans

1. How does AQO work? 2. Problems & Features > 5

What Does This Lead To ~\PGConf
C’Q.dev

Wrong cardinality estimation %

We are only
engaged in
improving the
assessment of
: . | cardinality and
Wrong cost estimation 4 don't consider

assessment of cost 4

Choose nonoptimal plans

1. How does AQO work? 2. Problems & Features > 16

Problem With Cardinality Estimation

How good are query optimizers, really?
V.Levis, A.Gubichev, A.Mirchev, P.Boncz,
A.Kemper and T.Neumann,

Proc. VLDB, Nov.2015

()

PGConf
.dev

Adaptive Cardilnality Estimation
O.lvanov, S.Bartunov,
Arxiv, Nov.2017

1. How does AQO work?

2. Problems & Features

>

Solutions From PostgreSQL ~\PGConf
5 C’Q.dev

Statistics on
expressions

Functional
dependencies

Pros:

e Solve the problem

e Have theoretical guarantees
The number of unique
combinations of values in the
columns

Extended
statistics

A list of the most common
combinations of values

The index statistics for
the expression

1. How does AQO work? 2. Problems & Features > 18

Solutions From PostgreSQL ~\PGConf
5 C’Q.dev

Statistics on
expressions

Functional
dependencies

Pros:

e Solve the problem

e Have theoretical guarantees
Contras:

e Require memory

e Require time for building or

m B I updating
e Not clear which of all possible
Exte.nd.ed column subsets are needed
statistics

The index statistics for
the expression

The number of unique
combinations of values in the
columns

A list of the most common
combinations of values

1. How does AQO work? 2. Problems & Features > 19

The Memory For Planner ~\PGConf
Yy C’Q.dev

* |t can store the actual cardinality of nodes and passes it to the
optimizer next time

e |t should store the selectivity of nodes to determine whether cardinality
is appropriate for current selectivities

e |t should learn from mistakes and correct data

1. How does AQO work? 2. Problems & Features > 20

The Memory For Planner ~\PGConf
Yy C’uQ.dev

* It can store the actual cardinality of nodes and passes it to the
optimizer next time

e |t should store the selectivity of nodes to determine whether cardinality
is appropriate for current selectivities

e |t should learn from mistakes and correct data

It is the main idea that AQC

1s based on!

1. How does AQO work? 2. Problems & Features > 21

Discuss The Model Description Of AQO GUQPGConf

o .dev
For example: e Every node is described through its selectivity
explain analyze SELECT * of all its conditions
FROM t1, t2
WHERE tl.x =t2.y AND
tl.t="1 AND
t2.c> 2;
relids = {1,2}
Nested Loop selectivity:
I {0.33, 0.005, 0.005 }
\ 4 \ 4
SeqScan t1 SeqScan t2
relid =1, clause: t="1' relid = 2, clause: ¢>2
selectivity: { 0.005 } selectivity: { 0.33 }

1. How does AQO work? 2. Problems & Features > 22

Discuss The Model Description Of AQO GUQPGConf
v dev

e Every node is described through its selectivity

For example: of all its conditions
explain analyze SELECT *
FROM t1, t2 e All conditions in the node that differ only in
WHERE t1.x = t2.y AND constants are equivalent
tl.t="1 AND
f2.0> 2

explain analyze SELECT *
FROM tl, t2

WHERE tl1.x =t2.y AND
t1.t ='3 AND
12.¢ % B¢

1. How does AQO work? 2. Problems & Features > 3

Discuss The Model Description Of AQO GUQPGConf

AY AY
s6a N’ 2 & s"o'&
o"‘s o"‘s o"‘s

©0@® © O
L ©

7N

o .dev

Every node is described through its selectivity
of all its conditions

All conditions in the node that differ only in
constants are equivalent

The closest nodes of the query based on R2-
distance are neighbours

1. How does AQO work?

2. Problems & Features > 04

Discuss The Model Description Of AQO GUQPGConf

o .dev
Ay Ay wl<w2<w3
e Every node is described through its selectivity
@ of all its conditions
\6’ \‘.’f \6‘ \6’ S P , H
e s 2 S~ S e All conditions in the node that differ only in
. 0.2 constants are equivalent
@ " ,0'3e~~ * The closest nodes of the query based on R2-
-0 . distance are neighbours
AN w3
e We need to predict the number of rows of a
X X new node based on the known data of its
> > neighbours

1. How does AQO work? 2. Problems & Features > 25

Ay wl<w2<w3
0% o
)] (% wi i} l (% w2

"n\" w3

30
Cardinality = E :
i=1

cardinality; *

weight;

E weight

Discuss The Model Description Of AQO

C’uk —~\PGConf

.dev

Every node is described through its selectivity
of all its conditions

All conditions in the node that differ only in
constants are equivalent

The closest nodes of the query based on R2-
distance are neighbours

We need to predict the number of rows of a
new node based on the known data of its
neighbours

Define the number of rows as a weighted
average of the cardinalities of neighbours

1. How does AQO work?

2. Problems & Features

D

Basic Priciples Of Implementation Of AQO GUQPGConf

Using K Nearest Neighbours method

Learning workflow is iterative:

o .dev

e After the execution stage some of these objects are appended

to the train set (set of queries) and the model can learn from them.

e On the planning stage the model tries to predict cardinality for a node

1. How does AQO work?

2. Problems & Features > o7

Basic Priciples Of Implementation Of AQO GUQPGConf

Using K Nearest Neighbours method

Learning workflow is iterative:

o .dev

e After the execution stage some of these objects are appended

to the train set (set of queries) and the model can learn from them.

e On the planning stage the model tries to predict cardinality for a node

1. How does AQO work?

2. Problems & Features > 08

Basic Priciples Of Implementation Of AQO GUQPGConf

Using K Nearest Neighbours method

Learning workflow is iterative:

o .dev

e After the execution stage some of these objects are appended

to the train set (set of queries) and the model can learn from them.

* On the planning stage the model tries to predict cardinality for a node

1. How does AQO work?

2. Problems & Features > 20

Basic Priciples Of Implementation Of AQO GUQ%CeI$onf
(>

Using K Nearest Neighbours method

Learning workflow is iterative:

e After the execution stage some of these objects are appended
to the train set (set of queries) and the model can learn from them.
e On the planning stage the model tries to predict cardinality for a node

Math for learning:

e Loss function - evaluate the discrepancy between predicted and actual rows

* Stochastic gradient optimizes data in the train set

1. How does AQO work? 2. Problems & Features > 30

AQO Components ~\PGConf
P C’Q.dev
o

. It stores selectivities and number of rows of nodes

AQO Data

1. How does AQO work? 2. Problems & Features > 31

AQO Components ~\PGConf
P C’Q.dev
T

AQO Data

It stores selectivities and number of rows of nodes

- {:}: Settings for all known queries: learning, using and autotunning AQO

AQO queries

1. How does AQO work? 2. Problems & Features > 32

AQO Components ~\PGConf
P C’Q.dev
T

AQO Data

It stores selectivities and number of rows of nodes

_ Settings for all known queries: learning, using and autotunning AQO

|
ot

AQO queries

It stores all known queries and it's hashes and query texts

AQO query text

1. How does AQO work? 2. Problems & Features > 33

AQO Components ~\PGConf
P C’Q.dev
T

AQO Data

It stores selectivities and number of rows of nodes

)

Settings for all known queries: learning, using and autotunning AQO

AQO queries

It stores all known queries and it's hashes and query texts

AQO query text

L&~ Itstores information about execution and planning time, cardinality error
— 2./ between predicted and actual number of rows - everything gathered with
=== AQO and without AQO

statistics

1. How does AQO work? 2. Problems & Features > 34

How Optimizer Works C’UQ%GCOM
v AV

Plain Text SQL System Catalog

E Cardinality Cost
& Estimator Estimator

SQL Query 4 Statistic i — E
- Parser : ki
_ L Node
Expressions
Parse Statement Access
r_ Rules ¢
v , | ¢ » - y Plan
Analyzer __ Tree Rewriter ~—— Path Generator —— Plan Generator ﬁ
| T Query Tree | . User

Query Executor

\—P -
Results .

Parse Statement

1. How does AQO work? 2. Problems & Features > 35

How AQO Works

Plain Text SQL System Catalog

E

(\Q

A
SQL Query Statistic
Parser
Parse Statement Access
ﬁ Rules
Analyzer Tree Rewriter
Settings | Query ID, Parse Statement
text
== Eo

AQO AQO

queries query text

Cardinality Cost
Estimator Estimator
_E
' \j l:f Node
Expressions

Path Generator —— Plan Generator ") Plan
Query Tree ‘ | l

Query Executor | '_

—~\PGConf
.dev

1 User

Results .

1. How does AQO work?

2. Problems & Features

36

How AQO Works G'UQF::IGCOM
v OV

Plain Text SQL System Catalog

B

SQL Query Statistic

[Parser]

Parse Statementl Access

Rules .
i .
] Tree Rewriter Plan Generator

T | Query Executor

AQO AQO
queries query text

1. How does AQO work? 2. Problems & Features > 37

How AQO Works: Collecting Statistics C’UQF:!GCOM
v JAEV

System
Catalog

Cardinality Cost
Estimator Estimator

L Node
Expressions

Statistics

y Plan

)-' Path Generator —}" Plan Generator
Query Tree /" Optimal . _ |
Path User
Query Executor

I—» -
Results .

1. How does AQO work? 2. Problems & Features > a8

How AQO Works: Collecting Statistics C’ULF:’GConf
eV

System
Catalog

Cardinality Cost
Estimator Estimator

: Node
Expressions

Statistics

-

&
: (Plan Learnin
» Path Generator ———— P Plan Generator g
Query Tree - < Optimal : ' ;
Path ' | User
Query Executor

I—» ~
Results .

1. How does AQO work? 2. Problems & Features > 39

How AQO Works: Collecting Statistics C’ULF:’GConf
eV

B0 <

AQO Data

New features,
(S:y:tilam Cardinality Cost new cardinalities
atalog Estimator Estimator
,E_
Statistics ' Node
Expressions ’
P > »
(v Plan Learning
[Path Generator —h Plan Generator
Query Tree - Optimal - ;
Path ' User

Query Executor

I -
Results .

1. How does AQO work? 2. Problems & Features > 40

How AQO Works: Collecting Statistics

ng;f:' Cardinality Cost
g Estimator Estimator
=]
Statistics L Node
Expressions
}' Path Generator :
Query Tree

— b
"~ Optimal \

()

PGConf

.dev
:_ﬁ. -
8" § €
AQQ Data New features,
new cardinalities
Features,
cardinalities
}’
> ’
» Plan Learnin
Plan Generator j 9
Query Executor | U

|—> -
Results .

1. How does AQO work?

2. Problems & Features

>

How AQO Works: Collecting Statistics GUQPGConf
b

dev
Cardinalit A—
| Y =g -
l Features "",_ . ¢
l AQQ Data New features,
(S:yf;?m Cardinality Cost new cardinalities
atalog Estimator Estimator Features,
=] cardinalities
Statistics L Node
Expressions ”
P » s
3 1 Plan Learning
» Path Generator —P> Plan Generator
Query Tree ’ Optimal - : ;
Path Query Executor User

\—b =
Results .

1. How does AQO work? 2. Problems & Features > 42

How AQO Works: Collecting Statistics GUQPGConf
b

dev
Cardinality '-_ﬁ g
l Features >;_'_ . €
AQQ Data New features,
g);st:;f? Cardinality Cost new cardinalities
g Estimator Estimator Features,
= cardinalities
Statistics L Node
Expressions ”
P > A
' ' "y Plan Learning
i Path Generator —— » Plan Generator
Query Tree ~ Optimal ;

Path Query Executor User

\—b e
Results .

Execution
statistics

1. How does AQO work? 2. Problems & Features > 43

How AQO Works: Collecting Statistics C’UQF:!GCOM
v JAEV

Cardinality S
| Features ’:;ﬁ : <
AQO Data New features
gyftfm Cardinality Cost new cardinalities
atalog Estimator Estimator Features,
= cardinalities
Statistics L Node
Expressions ’-’
P > °
F- Path Generator 1—p' Plari Ciflgiatsr | Plan Learning
Query Tree < Optimal ~ g ; A

Path ' Query Executor | User

\—> :
Results .

Execution
statistics if autotunnig mode is on

1. How does AQO work? 2. Problems & Features > 44

Hooks GUQ PGConf

o dev
Planning stage (prediction): After—execution stage:
* set_baserel_size_estimates e ExecutorEnd - learning
e set_joinrel_size_estimates e ExplainOnePlan - visualization

* set_foreign_rows_estimate

 get_parameterized_baserel_size

e get_parameterized_joinrel _size

 estimate_num_groups

Other:

e planner_hook — prepare to the planning stage

 ExecutorStart — setting the flags for statistics collection

* copy_generic_path_info — transmit Path information to Plan node

e create_plan_hook - transmit Plan information to the Execution stage for learning

1. How does AQO work? 2. Problems & Features > e

Hooks

Planning stage (prediction):

e set_baserel_size_estimates

e set_joinrel_size_estimates

e set_foreign rows_estimate
 get_parameterized_baserel_size
e get_parameterized_joinrel_size

@ estimatefnumfgroups

GUQ PGConf

o .dev

After—execution stage:
 ExecutorEnd - learning

 ExplainOnePlan - visualization

.

transmit cardinality information from the
optimizer to the AQO and vice versa

Other:

e planner_hook — prepare to the planning stage

e ExecutorStart - setting the flags for statistics collection

e copy_generic_path_info — transmit Path information to Plan node

e create_plan_hook - transmit Plan information to the Execution stage for learning

1. How does AQO work?

2. Problems & Features > 16

Hooks GUQ PGConf

o dev
Planning stage (prediction): After—execution stage:
* set_baserel_size_estimates * ExecutoreEnd - learning
e set_joinrel_size_estimates e ExplainOnePlan - visualization |

* set_foreign_rows_estimate
 get_parameterized_baserel_size

* get_parameterized_joinrel size visualize debugging information about the Query
plan with the AQO

 estimate_num_groups

Other:

e planner_hook — prepare to the planning stage
 ExecutorStart — setting the flags for statistics collection

* copy_generic_path_info — transmit Path information to Plan node

e create_plan_hook - transmit Plan information to the Execution stage for learning

1. How does AQO work? 2. Problems & Features > P

Pogzgres Pro C'UQ PGConf

dev

Problems & fecatures

Incompletely Executed Node C’UQF:]GCOM
v ACV

* Presence of a limit node in the query plan

e No rows in one of the subnodes of the connection node

2. Problems & Features 3. Examples > 49

Incompletely Executed Node C’UQ%GCOM
v ACV

* Presence of a limit node in the query plan

e No rows in one of the subnodes of the connection node

We shouldn't save the actual data and allow to learn from them

2. Problems & Features 3. Examples > 50

Incompletely Executed Node C’UQ%GCOM
v ACV

* Presence of a limit node in the query plan

e No rows in one of the subnodes of the connection node

We shouldn't save the actual data and allow to learn from them

In progress...

2. Problems & Features 3. Examples > 51

Incompletely Executed Node C’UQF:!GCOM
v ACV

* Presence of a limit node in the query plan
e No rows in one of the subnodes of the connection node

* Query execution time limit (statement timeout)

2. Problems & Features 3. Examples > 59

Statement timeout C’ULF:’GConf
(2 V4

System

Cardinality Cost
Catalog Estimator Estimator
E.
Statistics Nocle
Expressions
.- 4 Plan
Path Generator Plan Generator
Query Tree ' Optimal |
Path ' | User

'O Query Executor ®
Results .
Add timeout

2. Problems & Features 3. Examples > 53

AQO Learning With Statement Timeout kPGConf

'— 'ﬂ- 4
AQQ Data New features,
new cardinalities
gyftf'“ Cardinality Cost Features,
atalog Estimator Estimator cardinalities

Node ‘
Features,

Expressions Error cardinalities > i ¢
earning

Statistics

r ‘- (Plan
o Path Generator . » Plan Generator
- * Optimal - ;

Query Tree
Path (User

g7~ Query Executor |
(? \—’ @
Add timeout

2. Problems & Features 3. Examples > 54

AQO Learning With Statement Timeout LF:jGConf
eV

Features =
< ::_.# y <
Cardinalit
"y Feat AQO Data New features,
eatures, new cardinalities
Svstem cardinalities
Cyt | Cardinality Cost
alaog potimator Estimator Cardinality if
= reliability = 0,9
Statistics B Node ;‘
Features,
Expressions __Error cardinalities -) ¢
Learning
- PI
Path Generator Plan Generator an
Query Tree < QOptimal - - ;
Path | User

g~ Query Executor
Add timeout

2. Problems & Features 3. Examples > 55

Look—a-like Feature C’UQF:!GCOM
v OV

* A new query run

e Alot of information about similar queries

2. Problems & Features 3. Examples > 56

Look—a-like Feature C’UQ%GCOM
v OV

* A new query run
e Alot of information about similar queries

* AQO uses it to make a prediction

2. Problems & Features 3. Examples > 57

Look—a-like Feature C’UQ%GCOM
v OV

* Try to find the closest nodes from any kind of queries

2. Problems & Features 3. Examples > 58

Look—a-like Feature C’UQ%GCOM
v OV

* Try to find the closest nodes from any kind of queries

e Avoid collision — consider neighbours only with the same relation
oids and number of clauses

2. Problems & Features 3. Examples > 59

Pogzgres Pro C'UQ PGConf

dev

Examples

Examples

()

Score

sSno
cno

tno
cname

module

degree
text len
test preparation

Teacher

tno

You can find the database here:
https://github.com/Alena0704/Test—-AQO/tree/main

PGConf

.dev

3. Examples

4. Testing results

D -

AQO Terminology C’UQ%GCOM
v ACV

* feature space (fs) — the space where statistics on this class of queries are
collected

* feature subspace (fss) — the space where information about selectivity and
cardinality of every node are collected for each item of feature space

3. Examples 4. Testing results >

AQO Terminology

SELECT * FROM STUDENT WHERE GROUP = ‘classA;

SELECT * FROM STUDENT WHERE GROUP = ‘classB;

(\Q

— fs1

SELECT * FROM STUDENT WHERE gen = female’; }—st

PGConf
.dev

3. Examples

4. Testing results

s

AQO Terminology

(\Q

SELECT * FROM STUDENT WHERE GROUP = ‘classA;

SELECT * FROM STUDENT WHERE GROUP = ‘classB;

—> Seq Scan on student
Filter: (group = classA)

—> Index Scan using student_idx1 on student
Filter: (group = classA)

—> |ndex Scan using student_idx1 on student
Filter: (group = classB)

| E—

—
=

—fssl

= {552

PGConf
.dev

3. Examples

4. Testing results

D e

1. Functional Dependences _\PGConf

explain analyze select cname, avg(degree)
from score, course
where test_preparation=1 and
degree>90
group by (cname);
GroupAggregate (cost=6710.96..6712.96 rows=10 width=78) (actual time=27.632..29.604 rows=10 loops=1)
Group Key: course.cname
-> Sort (cost=6710.96..6711.58 rows=250 width=50) (actual time=27.407..27.954 rows=10870 loops=1)

-> Nested Loop (cost=1000.00..6701.00 |rows=250)] (actual time=23.113..24.535|rous=133?3 loops=1)
-> Materialize (cost=0.00..1.15 5=10) (actual time=0.000..0.001 rows=10 loops=1087)
cost=0.00..1.10 rows=10 width=46) (actual time=0.015..0.017 rows=10 loops=1)

-> Seq 5can on course

degree essay_text len clevel sgen sgroup test preparation
degree 1.000 0.491 0.012 0.000 0.318 0917
essay text len 0.4H 1.000 0.000 0.000 0.286 0.789
clevel 0.012 0.000 1.000 0.000 0.000 0.000
sgen 0.000 0.000 0.000 1.000 0.018 0.000
sgroup 0.318 0.286 0.000 0.018 1.000 0.294
test_preparation 0.789 0.000 0.000 0.294 1.000 65

1. Functional Dependences C’UQF:!GCOM
v ACV

AQO:2 iterations

explain analyze select cname, avg(degree)
from score, course
where test_preparation=1 and
degree>90
group by (cname);
HashAggregate (cost=6994.85..6994.97 rows=10 width=78) (actual time=33.869..33.930 rows=10 loops=1)
AQO: rows=10, error=0%, fs5=1419871189
Group Ker: Course.cname
> Nested Loo (cost=1000.00..6940.40 rows=10890) (actual time=25.147..30.012 rows=10870 loops=1)
AQﬂ:Irnws=1BB?B, error=0%, fss=-882375677
- erialize (cost=0.00..1.15 rows=10 width=46) (actual time=0.000..0.001 rows=10 loops=1087)
AQO: rows=10, error=0%, fss=-1076069505
-> Seq Scan on course (cost=0.00..1.10 rows=18) (actual time=0.016..0.020 rows=10 loops=1)
AQO: rows=10, error=0%, fss=-1076069505

3. Examples 4. Testing results 66

2. Non-Uniformed Data Distribution (_\PGConf

M1 Alovwg

explain analyze select avg(degree), sgroup
from score, course, student
where essay_text_len>500 and
course.cno=score.cno and
student.sno = score.sno

group by (sgroup);

HashAggregate (cost=2411.38..2411.44 rows=5 width=39) (actual time=170.344..170.352 rows=5 loops=1)

Group Key: student.sgroup Batches: 1 Memory Usage: 24kB
(cost=2.01..24083.53 rows=1570 width=11) (actual time=0.110..162.806 rows=18798 loops=1)
Hash Cond: (score.cno = course.cno)

|? Merge Join (cost=0.78..2396.43|rows=1570)

Herge Cond: (score.sno = student.sno
-> Index Scan on score (cost=0.42

-> Hash Join

(actual time=0.076..156.590 rows=18798 loops=1)

6280.76 rows=18901) (actual time=0.046..150.349 rows=18798 loops=1)

800
>
e
S 600
=)
o
£ 400
0 0 e N et | I
Q O Q Q N Q O Q
,.,JQ ‘D‘Q Q)Q Q}Q ,\0 %Q 0)0 '»QQ:

I 67

2. Non-Uniformed Data Distribution C’UQF:!GCOM
v OV

explain analyze select avg(degree), sgroup from score, course, student AQO:2 iterations
where essay_text_len>500 and
course.cno=score.cho and
student.sno = score.sno
group by (sgroup);
HashAggregate (cost=2528.64..2528.71 rows=5 width=39) (actual time=179.476..179.485 rows=5 loops=1)
AQO: rows=5, error=-0%, fss=-125982366 Group Key: student.sgroup Batches: 1 Memory Usage: 24kB
-> Merge Join (cost=0.93..2434.65 rows=18798 width=11) (actual time=0.066..171.115 rows=18798 loops=1)
AQO: rows=18798, error=0%, fss=390241325 Merge Cond: (score.sno = student.sno)
-> Nested Loop (cost=0.57..26729.30 rous=13?9§) (actual time=0.048..164.677 rows=18798 loops=1)

2 error=0%, fss=712494197
-> ex Scan on score (cost=0.42..26280.76 rows=18798) (actual time=0.030..151.596 rows=18798 loops=1)
AQO: rows=18798, error=0%, fss=-217544758 Filter: (essay_text_len > 500)
Rows Removed by Filter: 338202

3. Examples 4. Testing results (Q

2. Non-Uniformed Data Distribution C’UQF:!GCOM
v OV

WITHOUT AQO WITH AQO
HashAggregate HashAggregate
-> Hash Join -> Merge Join
Hash Cond:| (score.cno = course.cno) Merge Cond: (score.sno = student.sno)
-> Merge Join -> Nested Loop
Merge Cond: (score.sno = student.sno)

-> Index Scan using score_idxl on score

-> Index Scan using score_idxl on score Filter: (essay_text_len > 500)
Filter: (essay_text_len > 500) -> Memoize
-> Index Scan using student_pkey on student I-? Index Only Scan using course_pkey on coursd
-> Hash Index Cond: (cno = score.cno)
-> Seq Scan on course -> Index Scan using student_pkey on student

3. Examples 4. Testing results > €0

3. Outer Join

create table broke_down_course(cno INT, sno INT);
insert into broke_down_course
select cno, sno from SCORE

where test_preparation
order by random() limit 5000;

insert into broke_down_course
select cno, sno from SCORE

=1
“ broke down course

lx)
=
Q

1)
=
[=]

where test_preparation
order by random() limit 50000;

= 1 and degree < 69

= @ and degree < 68

test_preparation = 0
order by random()
limit 1000

UK1,FK1

UK1,FK2

degree

essay text len

test preparation

(\Q

3. Examples

4. Testing results

PGConf
.dev

70

3. Outer Join C’UQF:!GCOM
v OV

explain analyze select cname, avg(degree)
from course, student,score
join broke_down_course on
(score.cno=broke_down_course.cno and score.sno=broke_down_course.sno)
where score.sno = student.sno
group by (cname);
HashAggregate (cost=1688.42..1688.55 rows=10) (actual time=86.500..86.509 rows=10 loops=1)
Group Key: course.cname
-> Nested Loop (cost=91.92..1686.43|rows=399 (actual time=0.961..57.920|rows=77540]Lloops=1)
-> Nested Loop (cost=91.92..1680.30 rows=43] (actual time=ﬂ.954..4!73§F-;E;;;4$§E11oops=1)
-> Hash Join (cost=91.50..226.36 rows=48?)|(actual time=0.934..5.119 rows=7754 loops=1)

Hash Cond: (broke_dnwn_w student.sno)
-> Seq Scan on broke_ddWN—tourse (cost=0.00..114.10 rows=7918) (actual time=0.037..1.262 rows=7754 loops=1)

-> Hash (cost=54.00..54.00 rows=3000) (actual time=0.889..0.890 rows=3000 loops=1)
-> Seq Scan on student (cost=0.00..54.00 rows=3000) (actual time=0.006..0.417 rows=3600 loops=1)

3. Examples 4. Testing results 71

3. Outer Join C’UQF:!GCOM
v OV

explain analyze select cname, avg(degree) AQO:3 iteartions
from course, student,score join broke_down_course on

(score.cno=broke_down_course.cno and score.sno=broke_down_course.sno)
where score.sno = student.sno
group by (cname);
HashAggregate (cost=1414.94..1415.07 rows=10 width=78) (actual time=164.494..164.504 rows=18 loops=1)
AQO: rows=10, error=0%, fss=-651211982
-> Merge Join (cost=614.28..1027.24 rows=77540 width=50) (actual time=3.038..134.968 rows=77548 loops=1)
AQO: rows=77540, error=0%, fss=29214553
Merge Cond: (score.sno = student.sno)
-> Merge Join (cost=613.94..3362.22 rows=77540 width=58) (actual time=3.018..124.058 rows=77540 loops=1)
rows=??5¢3] error=0%, fss=-1852476170
Merge Cond: ((score.sno = broke_down_course.sno) AND (score.cno = broke_down_course.cno))
-> Nested Loop (cost=0.42..29139.14 rows=299971 width=58) (actual time=0.055..76.314 rows=299971 loops=1)
AQO: rows=299971, error=0%, fss=-2144628856

3. Examples 4. Testing results -

3. Outer Join C’UQF:!GCOM
v OV

Without AQO With AQO
HashAggregate HashAggregate
-> Nested Loop -> Merge Join

Merge Cond: (score.sno = student.sno)

-> Nested Loop -> Merge Join

-> Hash Join [ngge Cond: ((score.sno = broke_down_course.sno)

Hash Cond: (broke_down_course.sno = student.sno) AND (score.cno = broke_down_course.cno))
=> Nested Loop
-> Seq Scan on broke_down_course -> Index Scan using score_idxl on score
-> Hash -> Materialize
-> Seq Scan on student -> Seq Scan on course

-> Index Scan using score_idxl on score -> Sort
Index Cond: ((sno = broke_down_course.sno) -> Seq Scan on broke_down_course
AND (cno = broke_down_course.cno)) | -> Index Only Scan using student_pkey on student

-> Materialize
-> Seq Scan on course

3. Examples 4. Testing results > -

3. Outer Join

explain analyze select cname, avg(degree)
from course, student,score

join broke_down_course on
(score.cno=broke_down_course.cno and score.sno=broke_down_course.sno)
where score.sno = student.sno group by (cname);

HashAggregate (rows=10) (rows=10)
-> Merge Join (rows=77540) (rows=77540)
Merge Cond: (score.sno = student.sno)
-> Merge Join (rows=77540) (rows=77540)
Merge Cond: ((score.sno = broke_down_course.sno) AND
(score.cno = broke_down_course.cno))
-> Nested Loop (rows=299971) (rows=299971)
-> Index Scan on score (rows=29998) (rows=29998)
-> Materialize (rows=180) (rows=10)
-> Seqg Scan on course (rows=10) (rows=10)

2

-> Sort (rows=7754) (rous=??531b
Sort Key: broke_down_course.sno, broke_down_course.cno

-> Seq Scan on broke_down_course (rows=7754) 1rows=??54:

-> Index ﬂniy Scan on student (rows=3000) (rows=3000)

PGConf

74

3. The Same Problem On A Difference Scale C’UQF:!GCOM
v OV

-> Merge Join (rows=354965847) (rows=1484797760)
Merge Cond: (((sm.analit_uc_nom)::text = (ob.analit_uc_nom)::text) AND ...))
-> Sort (rows=240894) (rows=240894)
Sort Key: sm.analit_uc_nom, sm.razd_uc, sm.vid_zapas, sm.org
-> Seq Scan on stoimost sm (rows=240894) (rows=240894)

-> Sort frnw5=2419415|frnw5=1434?9343?5|

Sort Key: ob.analit_uc_nom, ob.razd_uc, ob.vid_zapas, ob.or
-> Seq Scan on oborots_work ob (rnu5=241941)Igraw5=241941§|

3. Examples 4. Testing results > -

. The Same Problem On A Difference Scale C’UQF:!GCOM
v OV

-> Merge Join (rows=354965847) (rows=1484797760)
Merge Cond: (((sm.analit_uc_nom)::text = (ob.analit_uc_nom)::text) AND ...))
-> Sort (rows=240894) (rows=240894)
Sort Key: sm.analit_uc_nom, sm.razd_uc, sm.vid_zapas, sm.org
-> Seq Scan on stoimost sm (rows=240894) (rows=240894)

-> Sort (rnw5=2419415|frnw5=1434?9343?5|

Sort Key: ob.analit_uc_nom, ob.razd_uc, ob.vid_zapas, ob.or
-> Seq Scan on oborots_work ob (rnu5=241941)Igraw5=241941§|

The Reason;

e The Merge Join rewinds its inner side to the start of the current group of equal keyed tuples if the next
outer tuple must be also joined to the same group.
e Explain counts those tuples twice.

You can find the thread here: bit.ly/3yyH6dx

3. Examples 4. Testing results > o

Analysing with aqo_query_stats _\PGConf
b

.dev

| SELECT * FROM aqo_query_stats \gx

1 - RECORD 1 Jeccccmmmommc oo cccccccccccccccccccccdcccccccccccccccccccccccccaaaaa-
7430954541387508965
§0.221163375,0.21725739,0.235732091,0.221946228,0.217616499,0.256209121,0.219321755%
£0.237385655,0.242997873,0.230060608,0.235878734,0.231573898,0.229296202,0.2295476388%

+
2 queryid |
l
I
5 planning_time_with_aqo | §0.048900852,0.048985714,0.053167861,0.049327628,0.048804019,0.057644151,0.049276517%
I
i
i
]
|

3 execution_time_with_aqo

4 execution time without agqo

6 planning_time_without_aqo §0.020790356,0.021514073,0.019026199,0.019274039,0.020245325,0.019258199,0.019515377%
7 cardinality_error_with_aqo 0.83850817669777474,0.03850817669777474,0.03850817669777474,0.03850817669777474
£0.960947753415567,0.960947753415567,0.960947753415567,0.960947753415567,0.960947753415567%

8 cardinality_error_without_aqo

¥ executions_with_aqo a9
10 executions_without_aqo 15
11=[RECORD 2 Js-c~seassnansasna
i ol ol o o oo o
12 queryid -3495764495604230484

I
13 execution_time_with_aqo | §1.575004969,1.686475542,1.497201844,1.574961415,1.710951376,1.625525643,1.658347755%
14 execution_time_without_aqo | §0.983308019,0.961930579,0.838651462,1.415978422,0.834555689,0.913765313,0.787577022%
15 planning_time_with_aqo | §0.059669438,0.061208187,0.057022197,0.054507226,0.074582017,0.054978341,0.057604733%
16 planning_time_without_aqo | §0.823877627,0.023690638,0.025620636,0.02337944,0.023244195,0.024100254,0.024150521%
| §0.03850817669777474,0.03850817669777474,0.03850817669777474,0.03850817669777474%
l
I
I

$0.9322820300116723,0.9322820300116723,0.9322820300116723,0.9322820300116723%

17 cardinality_error_with_aqo
18 cardinality_error_without_aqo

19 executions_with_aqo 49
20 executions_without_aqo 14
3. Examples 4. Testing results

77

Control queries with AQO C’UQF:]GCOM
v ACV

postgres=# SELECT count(*) FROM
(SELECT queryid AS id FROM aqo_queries) AS q1,
LATERAL aqo_queries_update(7799030661291734910, NULL, trﬁe, falT?e, falﬁe);

fs fss learn use autotunning
count

99

(1 row)

3. Examples 4. Testing results > 78

Modes GUQ PGConf

.dev

AUTO Intelligent: when the cardinality error remains sufficiently small and stable for several only
learned successive executions of a query, aqo turns on use_aqo

DISABLED Disabled: disabled at all query types
LEARN Learn: enabled for learning for every query types

Forced: enabled for all query types
PREDICTION
Controlled: only learns and makes predictions for known queries

Frozen: makes predictions for known queries, but does not learn from any queries

How does AQO work? Problems & Features > 79

AQO's storage structure

(ruQ PGConf

o .dev

it's number of rows

hashes

aqo_data ago_queries agqo_query_text ago_query_stat
e Feature space (Queries) * Query hash e Query hash * Queryid
* Feature subspace (Nodes) | * Learn AQO * Query text e Execution time with AQO
* NFeatures e Use AQO e Execution time without AQO
* Features (Selectivities) * Feature space (Query * Planning time with AQO
e Targets (Rows) hash) e Planning time without AQO
e Oids of relations e Auto tuning e Cardinality error with AQO
e Cardinality Error without
AQO
e Executions with AQO
e Executions without AQO
It stores selectivities for Settings for all known It stores all known For analysis of working AQO
every query statement and | queries queries and it's

3. Examples

4. Testing results

"

Pogzgres Pro C'UQ PGConf

dev

Testing results

Internet Movie Database (IMDB) C’UQF:]GCOM
v AV

e set of 113 queries
* every query have from 3 to 16 joins
* the queries answer the logical questions of a movie lover

e queries are difficult for the optimizer due to
the large number of joins and correlations

You can find the thread here: bit.ly/4bCE5ru

4. Testing results Conclusion > 32

Internet Movie Database (IMDB) QF:jGConf
v AV

complete_cast) mn'l-"u_cumpnniesd COHMPANY_Name
aka_title comp_cast_type id — id id
id i _ﬂ:::: sebrfect_id company_id country_code
movie_id status_id mavie_id company_type| imdb_id
episode_nr movie_id compeany_iype_id id mdSsum
episode_of_id kind name
imdb_index title name_pcode_nf
kind_id movie_link id gy — name_peode_si
mdSsum id _ Kind_id 7
— El:-ld e id episode_nr rrovie_id keyword
phonetic_code ;. j: _mﬂ:'fr_ episode_of_id keyword_id id
production_ycar inktype_ imdb_id keyword
Fcazon_nr imdb_index kind_type phonetic_code
thde link_type mid Ssum id
id ohonetic_code kind movie_info movie_info_idx
char_name link production_year| id id
id SEASON_Nr movie _fd info_type rmovie _fd
imdb_id — series_years info_type_id id info_rype_id
imdb_index 5 cast_tnto info info info
mdSsum e
ey maorvie_id name Lz nole
aka_name id
person_id
name_poode_nf] E
= mmp: ol mrsan_m!e_i:h-—_“x_' id i / gender person_info|
s = = Fer BT person_id imdb_id ish
ze imdb_index imdb_index infer_twpe_id
T‘Illl_l]fPE g mdSsum mdSsum person_id
id NaAme e info
role name_pcode_cf| name_pcode_cf] note
name_pcode_nf] name_pcode_nf]
sumame_pcode surname_pcode

4. Testing results Conclusion 33

Tests On Join Order Benchmark

main parameters on all stages:
 random/seq_page_cost =1

* from/join_collapse_limit =4
parameters on learning stage:

e disable parallelism

disabled, frozen stages:

e enable parallelism

(\Q

PGConf

o .dev

4. Testing results

Conclusion

>

~YPGConf
C’UQ .devon

JOB Results In Disabled Mode

JOB results in disabled mode

execution time

70000

60000

20000

AN

|

40000

30000

20000

sl =al

10000

|bs'pe
s
|bs'pa
|bs'og
|bs'ay
lbs'e}
lbhs'ag
[bs'ag
|bs'eq
|bs'dg
bs'af
|bs'ed
|bs'dg
|hs'age
IDs'BEE
Ibs'efE
|bs'qLE
|bs'3pg
|bs'eQE
|bs'ag
lbs'er
|bs'd6Z
|bs'agr
Ibs'egr
|bs'aLz
|bs'aag
|bs‘eag
|bs'asE
|bs'ayz 0
_nm_umm.w
_Wm_mmm ﬂr.V
RS ALE 5
lbs'egz O
|bs'q Lz
lbs'ang
Ibs'eng
[hs'a|
Ibs'e|
[bs'aF |
IDs'ER L
|bs'ggL
L3V
bs'plL
|bs'asL
|bs'pal
Ibs'qal
|bs'pg L
|bs'ag L
st |
Ibs'ef L
|bs'ag |
Ibs'BE L
lbs'az L
|bs'p Ll
bs'aLL
[bs'an L
Ibs'eqgL

85

Conclusion

4. Testing results

/7 "\ PGConf

JOB Results In Learn Mode

cardinality error

4

execution time

250000

200000

150000

100000

s0000

Ibs'pg

Ibs'0f

Ibs'pg

Ibs'0g

|bs'ay

|hs'e;

|hs'ag

|hs'2g

|0s'Bg

Ihs'qg

s 2%

|hs'ey

Ihs'qE

oS aeE
|ns'BEE
|bs'ezE
LA
|bs'agE
|bs'eqE
|bs'az

|hs'er

Ibs'd6z7
|ns'2az
|ns'BET
Ihs'qsz
|ns'2az
|bs'BgT
Ibs'05Z
Ihs'apz
|is"ae7
|ns'BET
|bs'agz
|ns'B7 T
Ihs'qLz
|bs'anz
|bs'eqnz
[ak:3 01

|hs'e |

[0S 26 |
|0s'BR |
Ibs'ag L
Ihs') 1
Ihs'psL
Ibs'as L
Ibs'pal
Ihs'qa |
Ihs'pg L
Ihs'q5 L
[0S 2% |
[ns'Ef |
|hs'aE |
|bs'BE |
Ibs'qz |
lhs'pl]
Ibs'ql]
|Bs'a01
|bs'eg |

~r

/7 "\ PGConf

JOB Results In Learn Mode

cardinality error

4

0000 _E€XECUtion time

200000

150000

100000

50000

87

_wmﬁm
Ibs'0g
Ibs'pg /
Ibs'ag
\bs'ay
\bs'ey
Ibs'ag
Ibs'ag
Ibs'eq
Ihs'qg
|bs'af
Ibs'ey
Ihs'qE
Ihs"JEE
Ibs'BEE
lbs'ezE
Ibs'aLE
Ibsa0g
Ibs'eqE
Ibs'az
Ibs'eg
Ibs'd6z
Ihs'38Z
Ihs'eaz
Ibs'q.z
Ihs'iaz
Ibs'eaz
Ibs'05z
Ibs'ayz
Ihs"IEZ
bs'eez)
lbs WL T
|hs'erz mW
Ibs'qLz
bs'agr ©
|bs'eqz
|hs'ay
|bs'e|
|bs'ag |
|bs'eR |
Ibs'ag |
Ibs')s |
Ihs'ps L
Ibs'qs L
Ibs'pa |
Ibs'qg |
Ihs'pg |
Ibs'ag |
s g |
|bs'et |
|bs'ag)
|bs'eg |
lbs'az |
lbs'pLL
lbs'a L)
|bs'ag|
|bs'eq|

/7 "\ PGConf

JOB Results In Learn Mode

cardinality error

El

en00n €XEcution time

200000

150000

100000

50000

Ibs'pg
Ibs'qg
Ibs'pg
Ibs'qg
|bs'ay
|bs'ey
|bs'ag
|bs'ag
|bs'eg
Ibs'qg
|bs'ag
|bs'ef
Ibs'qg
Ibs"IEE
Ibs'eEE
Ibs'eZE
b8 |E
Ibs"a0€
Ibs'eQE
|bs'ag
|bs'ez
Ibs'a6z
Ibs'agz
Ibs'egg
Ibs'q.z
Ibs'a9g
Ibs'egg
Ibs'qsz
Ibs'qyZ
Ibs"IET
Ibs'egg

Ibs"azT -

Ihs'ezz
Ihs'qlLz
Ihs'30Z
Ihs'e0z
|bs'a|

|bs'e|

Ihs'36
[0S'BR |
Ihs'ag L
Ihs'}/ |
Ihs'psL
Ibs'qzl
Ibs'pg|
Ibs'qg|
Ibs'pg|
Ibs'0g|
|bs'ar]
0SB
|hs'ag]
|BS'BE |
Ibs'az L
Ihs'plL
Ibs'qL L
I
[Bs'BQ L

88

FIGIS

que

/7 A\ PGConf

JOB Results In Learn Mode

cardinality error

a

enoon _E€XEcution time

200000

150000

100000

|
e

50000

0

Ibs'pg
Ibs'qg
Ibs'pg
Ibs'qg
|bs'ay
|bs'ey
|bs'ag
|bs'ag
|bs'Eg
Ibs'ag
|bs'ay
|bs'ey
Ibs'qe
Ibs'agE
Ibs'EEE
Ibs'eZE
Ibs'qLE
Ibs"30€E
Ibs'eQE
|bs'ag
|bs'eg
Ibs a6z
Ibs'38Z
Ibs'eqg
Ibs'qsg
Ibs'39Z
Ibs'eqg
Ibs'q5g
Ibs'apg
Ibs'IET
Ibs'BET

|bs'azz -

Ihs'ezz
Ihs'qLZ
Ibs'a0Z
Ibs'eQz
|bs'a)

|bs'e|

Ibs 36 |
[0S'BR |
Ibs'ag|
Ibs'is |
e A
lbs'qll
Ibs'pg|
Ibs'qa |
Ibs'pg|
Ibs'g|
|bs'at]
|hs'ef |
[0S ag |
[BS'BE |
Ibs'az L
Ihs'plL
Ibs'qL L
08201
[Bs'BQ L

89

FIGIS

que

/7 A\ PGConf

JOB Results In Learn Mode

cardinality error

-1

enoon _E€XEcution time

200000

150000

100000

50000

Ibs'pg
Ibs'qg
Ibs'pg
Ibs'qg
|bs'ay
|bs'ey
|bs'ag
|bs'ag
|bs'Eg
Ibs'ag
|bs'ay
|bs'ey
Ibs'qe
Ibs'agE
Ibs'EEE
Ibs'eZE
Ibs'qLE
Ibs"30€
Ibs'eQE
|bs'ag
|bs'eg
Ibs a6z
Ibs'38Z
Ibs'eqg
Ibs'qsg
Ibs'39Z
Ibs'eqg
Ibs'q5g
Ibs'apg
Ibs'IET
Ibs'BET

|bs'azz -

Ihs'ezz
Ihs'qLz
Ibs'a0Z
Ibs'eQz
|bs'a)

|bs'e|

Ibs 36 |
[DS'BR |
Ibs'ag|
Ibs'is |
e A
lbs'qll
Ibs'pg|
Ibs'qa |
Ibs'pg|
Ibs'g|
|bs'at]
|hs'ef |
[0S ag |
[0S'BE |
Ibs'az 1
Ihs'plL
Ibs'qL L
08201
[Bs'BQ L

90

FIGIS

que

/7 A\ PGConf

JOB Results In Learn Mode

cardinality error

q

eno0n €X€cution time

200000

150000

100000

50000

—/\Lﬂbhmp\/_,_/__/_ﬁh

=

91

_Wm_ﬂ_m
Ibs'qg
Ibs'pg

Ibs'qg /
|bs'ay
|bs'ey
|bs'ag
|bs'ag
|bs'eg
Ibs'qg
|bs'ay
|bs'ey
Ibs'qg
Ibs"agg
Ibs'BEE
Ibs'eZE
Ibs'q g
|bs'ape
Ibs'eQe
|bs'ag
|bs'ez
Ibs'q6T
|bs'agz
|bs'egz
Ibs'qsz
|bs'agz
|bs'egr
Ibs'qsg
Ibs'apz

IS IETN
Ibs'egfd _
IbS'ITA= —
_nm_mmm%
Ibs'a13o
Ibs'a0z
Ibs'eqg
|bs'a|
|bs'e]
Ibs'36 |
|bs'ER |
Ibs'ag
Ibs1l)
Ibs'ps)
Ibs'as)
Ibs'pa|
Ibs'qg)
Ibs'pg
Ibs'ag)
|bs'at |
|bs'ep |
|bs'IE |
|bs'eE |
Ibs'az |
Ibs'pll
Ibs'ql)
|bs'ag|
|bs'ep|

/7 "\ PGConf

JOB Results In Learn Mode

cardinality error

4
=3
2
1

(]

sepona _€XEcution time

200000

150000

100000

s0000

92

_mmﬁm
Ihs'q6
Ihs'pa

Ihs'q8 //V
|bs'ay

|bs'e;

|bs'ag

|bs'ag

|bs'eg

Ihs'qg

|bs'af

|bs'ey

Ihs'qE
Ihs"IEE
Ihs'BEE
Ihs'eZE
Ihs'qLE
Ibs"I0E
Ihs'eQE
|bs'ag

|hs'ey
Ibs'q6z
|bs'agz
|hs'egz
Ibs'q.g
Ihs'a97
Ibs'eaz
Ibs'05z
Ibs'ayg
IbsIEIN
hs'egf® _|
Ibs' 7= —
_nﬂmmmw
'O
|bs'anz
|bs'eqnz
s
|hs'e |
[0S 26 |
|0S'BR |
Ibs'ag|
LEY YA
lhs'pll
Ibs'as L
Ibs'pa |
Ibs'qa |
Ibs'pg|
Ibs'qs |
[0S af |
|hs'ef |
[0S ag |
[BS'BE |
Ibs'az 1
Ihs'plL
Ibs'qLL
]
[Bs'BO L

~YPGConf
C’UL .devon

Improved Query Performance

The ratio between execution time without and with using AQO

Relative execution time — — No better no worse (1) — — Better in 4 times (4) — — Worse (0)

|
|
|
|
|
|
|
|
l
|
I
m =t

STl UOTIN2axa aATlelay

o
@)\

['22a.sql', '22b.sgl'] >k\\\///V

['12a.s5q1"]
['28c.sqQl"]
['23c.s5ql"]
['22¢c.s5q1"]
['16c.sql"]
['2a.sql’',

['6a.sqgl’',

['29b.sqgl']
["1b.sql']

['29¢c.sql"']
['18c.sql']
['8b.sql']

['25a.sql']
['11a.sqgl']
['31a.sql']
['20a.sql']
['32a.sql',
[FATeusq]
['9b.sql']

['1c.sql']

['16a.sql’,
['13b.sql',
['5c.sql']

['33c.sgl']
['3b.sql']

['33a.sql']
['15c.sqgl']
["3c.sql']

['13a.sqgl']
['12c.sqgl']
['17b.sqgl',
['12b.sgl']
['31c.sql']
['25c.sql']
['d17d.sql',
['7b.sql']

['9d.sql']

['6b.sql’',

['21c.sql"]
['1Ba.sql']
['22d.sqgl']
['11d.sgl']
['1@b.sgl']
['4a.sql’',

['28b.sgl']
['18b.sgl']
['9a.s5ql']

['14b.sgl']

'2b.sql', "
'6c.sqgl', "

'32b.sql']

'16d.sql']
'13c.sql']

'17c.sql’']

'47f.sql']

'6d.sql']

'4b.sql', "

Conclusion

4. Testing results

In Conclusion C’uQPGCOhf

o .dev
AQO:

+ Stores statistical information about query execution
+ Helps optimizer to improve cardinality estimation

+ Is useful for complicated queries of the same structure with slow plan caused by
bad cardinality estimates

+ Works well for OLAP-like queries

You can find the AQO extension here:
https://github.com/postgrespro/aqo

Conclusion > 94

In Conclusion C’UQF:’(;Sonf
v e

AQO:

+ Stores statistical information about query execution
+ Helps optimizer to improve cardinality estimation

+ Is useful for complicated queries of the same structure with slow plan caused by
bad cardinality estimates

+ Works well for OLAP-like queries

Has limitations:

e Works well when data distribution doesn't change rapidly
e Works well in databases with few temporary tables

You can find the AQO extension here:
https://github.com/postgrespro/aqo

Conclusion > 95

Plans GUQ PGConf

o .dev

 Learning on replica: the main question is whose knowledge we should use

* Learning on temporary tables: the main question is how to determine them
after cancelation of session

* Queries with limit number of tuples (Limit node)
e One of the subnodes of the connection node does not have any rows

e Accounting the side—effect of skyrocketing of tuples because of the presence
of dublicate-keyed tuples

You can find the AQO extension here:
https://github.com/postgrespro/aqo

Conclusion > 9%

Pogzgres Pro C'UQ PGConf

dev

Thank You For Your Attention!

Speaker: Alena Rybakina
email: a.rybakina@postgrespro.ru
LinkedIn: https://www.linkedin.com/in/alena-rybakina

